_____ C. U. SHAH UNIVERSITY **Summer Examination-2020**

Subject Name : Geotechnical Engineering - I

Subject Code : 4TE05GTE1			Branch: B.Tech (Civil)		
Seme	ster : 5	Date : 02/03/2020	Time : 10:30 To 01:30	Marks : 70	
Instru (1) (2) (3) (4)	ctions:) Use c) Instru) Draw) Assur	of Programmable calculator & any actions written on main answer bo neat diagrams and figures (if neo me suitable data if needed.	y other electronic instrument is pr ook are strictly to be obeyed. cessary) at right places.	ohibited.	
Q-1	1 2 3 4 5 6 7 8 9 10 11 12 13 14	Define the following terms: Seepage velocity Degree of saturation Specific gravity Relative density Loess type Maximum dry density Well graded soil Sensitivity Activity Index Calcareous soil Shrinkage limit Sensitivity Flownet Aquifuge		(14) 14	
Atten	npt any	four questions from Q-2 to Q-8			
Q-2	(a) (b)	Attempt all questions What are the factors affecting co Write short notes on the followir (i) honeycomb structure (ii) Floc	mpaction? Discuss in details. ng structure with neat sketch: culent structure	(14) 07 07	
Q-3 0-4	(a) (b)	Attempt all questions Derive Laplace equation for 2-D Explain sand replacement metho Attempt all questions	flow through soil. d to find field density of soil.	(14) 08 06 (14)	

Q-4 Attempt all questions

- Describe the spring analogy theory for primary consolidation. What are 07 **(a)** the uses of it?
- State and explain factors affecting permeability. **(b)**

07

Q-5		Attempt all questions	(14)
-	(a)	Explain, how the results of consolidation test can be used to predict the settlement of a structure caused by the consolidation of clayey soil below	07
		foundation.	
	(b)	Explain Mohr's Coulomb theory.	07
Q-6		Attempt all questions	(14)
	(a)	The plastic and liquid limit of a soil is 47 % and 33 % respectively. The	07
		percentage volume change from the liquid limit to dry state is 44 % of	
		the dry volume. Similarly, the percentage volume change from plastic	
		limit to the dry state is 29 % of the dry volume. Determine the shrinkage	
		limit and shrinkage ratio.	
	(b)	Write differences between compaction and consolidation.	07
Q-7		Attempt all questions	(14)
	(a)	Enumerate the various tests for finding the shear strength of soil and explain any one test of shear strength with its sketch.	07
	(b)	Define Particle size distribution curve for different types of soils and also	07
		write down the advantages of using semi-log plot for the particle size	
		distribution.	
Q-8		Attempt all questions	(14)
	(a)	Enlist the various soil classification systems and explain the textural	08
		classification system in details.	
	(b)	Calculate the value of permeability of a sample of 6 cm height and 50	06
		cm^2 cross-sectional area, if a quantity of water of 430 cm ³ flows down in	
		10 minutes under an effective constant head of 40 cm. on oven drying the	
		test specimen weighed 498 g. Assume G=2.65, calculate the discharge	
		velocity and seepage velocity of water.	

